MICROWAVE OVEN TECH SHEET

CAUTION
 Disconnect from Electrical Supply before Servicing Unit

PRECAUTIONS TO BE OBSERVED BEFORE AND DURING SERVICING TO AVOID POSSIBLE EXPOSURE TO EXCESSIVE MICROWAVE ENERGY

A. Do not operate or allow the oven to be operated if the door is damaged.

B. Check the following safety checks on all components in the interlock, monitor, door seal, and microwave generation and transmission systems before operating the oven. And also check that all wire leads are in their correct position before operating the oven.

C. A microwave leakage check must be performed on the oven before release to the owner. To perform this check, the oven must be released to the owner.

D. All microwave leakage should be less than 0.5 milliwatts per meter at a distance of 0.1 meter from the door edge.

E. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

F. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

G. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

H. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

I. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

J. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

K. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

L. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

M. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

N. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

O. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

P. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

Q. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

R. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

S. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

T. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

U. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

V. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

W. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

X. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

Y. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

Z. The output power of the magnetron can be measured by performing a water temperature rise test after the oven has been running for a sufficient time. The output power is obtained by the formula:

\[P = \frac{\Delta T}{t} \times Q \]

where:
- \(P \) is the output power in watts
- \(\Delta T \) is the observed temperature rise in degrees Celsius
- \(t \) is the time in seconds
- \(Q \) is the volume of water in liters

NOTE: For servicing replacement use 120V, 100% high efficiency for high voltage leads to avoid electrical shock or other personal injury or product damage.